
Russian Academy of Sciences

EPSE-21 — Oberon Day @ CERN — 10 March 2004

How Oberon bridges computing paradigms
How garbage collection is similar to the complex plane

Benchmark: Oberon/Component Pascal vs C++ in numerical computations

Oberon: New dimensions
for design of algorithms
for scientific applications

Fyodor V. Tkachov

Leading Scientist
Department of Theoretical Physics

Institute for Nuclear Research, Moscow

Concrete experience: BlackBox/Component Pascal
Conclusions valid for any Oberon

Russian Academy of Sciences



Russian Academy of Sciences

EPSE-21 — Oberon Day @ CERN — 10 March 2004

2 103
100

1 3

1+2+100
each intermediate result
requires a new memory cell;
“garbage” — cells no longer
used — must be reclaimed

Restrictions for safety: structured programming [GOTO], static typing

The single most important feature: garbage collection

Recursive functions (functional programming)
no loops — only functions; no assignments — only parameter substitutions
Lisp (Reduce), ML etc.
Tradition: automatic typing (not specific to rec. fun.’s)
99% of bugs found by compiler; 1% never found; heavyweight, complex

Mathematical views on computations

Turing machine (imperative/procedural programming)
row of memory cells + modification of their content
assignments and loops
ASM, Fortran
max efficiency; error prone

Dijkstra et al.: programs can be systematically and
rigorously derived

Markov’s algorithms
substitutions on a sequence of symbols
regular expressions; SCHOONSCHIP



Russian Academy of Sciences

EPSE-21 — Oberon Day @ CERN — 10 March 2004

Technological

Run-time efficiency: basis = imperative
Correctness: necessary restrictions + all the wisdom of functional
Compilation efficiency: simplicity and regularity; 1-pass compiler
Portability: minimality

Psychiatric

Readability: we spent more time reading prog’s than writing
Readability: 30% of brain visual processing
Non-IT professionals must do tons of programming: give us learn-able PL!
Interface design: simple, streamlined interfaced felt by users more powerful
We err: robustness w.r.t. typos; static typing

Spare us Bug-tris — enough garbage is falling on our heads daily
Give us sharp knives with non-slippery handles

Reality: always synthesis
imperative + best of functional; markovian in libraries

Social

We communicate: reduce communication errors
Reduce unnecessary specialization (“caste of IT gurus”??)
Evolution: features impossible to remove
Teaching: new employees; kids

Simplicity here = minimalism + regularity + lucidity



Russian Academy of Sciences

EPSE-21 — Oberon Day @ CERN — 10 March 2004

RELIABILITY + POWERMETICULOUS DESIGN SIMPLICITY

Oberon = Elementa of programming languages

Let’s not be blinded by short-term considerations!

Great designs last

Oberon: an astounding solution!

Language Report: just about 20 pages!
The language is so small that it is hard to believe it is complete. But it is!

Such simplicity is deceptive
Recall how uneconomical beginners’ programs are.

Pascal, Modula-2, Oberon — 3rd iteration — Turing already for the 1st

See lectures by J.Gutknecht
and N.Wirth

recall A.Hoare ...



Russian Academy of Sciences

EPSE-21 — Oberon Day @ CERN — 10 March 2004

Case study: development of Optimal Jet Finder (2000)

Solution to a 25 yr old problem.
Leading experts in ‘98: jet definition of that type “unfeasible”:
minimization in >103 dimensions.

E.g. find optimal distribution of 140 particles into 6 clusters (jets).
Optimal = minimum of a known function (“shape observable”).

j0

j1

j2
particle 0 particle 1

Each configuration of dots = distribution of particles between jets.

Gradient — which? Coordinate-wise? Boundaries??

Performance is critical.



Russian Academy of Sciences

EPSE-21 — Oberon Day @ CERN — 10 March 2004

Key for successful experimentation:
allocate what’s needed (gradients, new
test positions, etc.) as needed in Local,
relying on garbage collection.
When works, map to static memory.

Local
minimization
(one simplex)

Kinematics
(e+e−; h+h)

Global
minimization

IO

Interfacetotal: ~1200 lines

hardest;
essential to isolate

abstract

Global, Local must cooperate (backup!)
Local must be self-sufficient



Russian Academy of Sciences

EPSE-21 — Oberon Day @ CERN — 10 March 2004

Prejudice against garbage collection (“inefficient”), however:
Garbage collection is here not as bad as e.g. in Lisp
because much more functionality per allocation

Efficient construction of sophisticated algorithms:
Find algorithm using dynamic allocation, relying on GC.
Eliminate dynamic allocation.

80% of dynamic allocation
requires 20% effort to get rid of.

New!

Nth variation of Pareto’s Law:

(Like we go into the complex plane when doing integrals.)

Leave the remaining 20% to the Oberon kernel to take care of!

AI...

We have not started to realize the full potential
of numerical algorithms with “intelligence”, i.e. dynamic data structures



Russian Academy of Sciences

EPSE-21 — Oberon Day @ CERN — 10 March 2004

Indeed: OJF has been ported to Fortran (2001) and C++ (2004)

Particularly telling is comparison with C++ because 1:1 correspondence
with the original Component Pascal (quasi-mechanical port in < 1 week):

To return to such archaic languages after Oberon = really sad;
like walking on a mine field

First version in Component Pascal < 4 weeks;
first attempt to implement in Fortran from CP ~2 weeks;
ironing out floating point — failed in 3 months with Fortran;
going back to CP: fixed in 3 days.

MS Visual C++ 6.0

debug full speed optimization

BlackBox

3.6±0.1 sec 9.3±0.1 sec 3.5±0.1 sec

With all safety checks,
with all debugging info! O(10) slower compilation

no multiple inheritance...



Russian Academy of Sciences

EPSE-21 — Oberon Day @ CERN — 10 March 2004

Lib — math library by Robert D. Campbell (BAE Systems, UK)

Gr — a toolbox of histogramming and graphical modules to support
developing interactive data acquisition (DAQ) and monitoring programs,
by Wojtek Skulski (Univ. of Rochester, US).

Several data plotting and fitting tools ... (http://www.zinnamturm.de/)

Fortran to Oberon compiler — Douglas G. Danforth (Greenwood
Farm Technologies, LLC, US).

Based on the Coco/R compiler tool by H.Mossenbock (ETHZ),
+ a modified scanner based on a parallel string search algorithm adopted
from Stanford University.

Variants of FORTRAN and will be addressed as plugin modules of a general
translation framework. The output, in like manner, will be a plugin for
generating Component Pascal, Oberon-2, and Active Oberon modules.
Upon completion of the FORTRAN components effort will be directed
toward the C, C++, and C# family.



Russian Academy of Sciences

EPSE-21 — Oberon Day @ CERN — 10 March 2004

Large-scale symbolic manipulation

interpreted symbolic engine, allowed a compiled Fortran subroutine

M.Veltman’s SCHOONSCHIP:

Design of MINCER (FT, 1982):

a huge boost from judiciously exploiting that feature
(a pretty complex computation with integers in static memory)

BEAR (Basic Extensible Algebra Resource; FT 1998-present):

A symbolic manipulation framework within a compiled language:
everything’s compiled unless absolutely requires dynamical handling.

40-hrs long calculations — never crashes.
3 times faster than the speed king Form-3 on equivalent algorithm,
“regular” optimization options still not employed.

We have only scratched the surface...


	Slide #1
	Slide #2
	Slide #3
	Slide #4
	Slide #5
	Slide #6
	Slide #7
	Slide #8
	Slide #9
	Slide #10

