
50 Years of Pascal
Niklaus Wirth

The programming language Pascal has won world-wide recognition. In celebration of its 50th birthday I
shall remark briefly today about its origin, spread, and further development.

Background

In the early 1960's, the languages Fortran (John Backus, IBM) for scientific, and Cobol (Jean Sammet,
IBM and DoD) for commercial applications dominated. Programs were written on paper, then punched
on cards, and one waited for a day for the results. Programming languages were recognized as
essential aids and accelerators of the hard process of programming.

In 1960, an international committee published the language Algol 60. It was the first time that a
language was defined by concisely formulated constructs and by a precise, formal syntax. Already two
years later it was recognized that a few corrections and improvements were needed. Mainly, however,
the range of applications should be widened, because Algol 60 was intended for scientific calculations
(numerical mathematics) only. Under the auspices of IFIP a Working Group (WG 2.1) was established
to tackle this project.

The group consisted of about 40 members with almost the same number of opinions and views about
what a successor of Algol should look like. There ensued many discussions, and on occasions the
debates ended even violently. Early in 1964 I became a member, and soon was requested to prepare a
concrete proposal. Two factions had developed in the committee. One of them aimed at a second, after
Algol 60, milestone, a language with radically new, untested concepts and pervasive flexibility. The
other faction remained more modest and focused on realistic improvements of known concepts. After
all, time was pressing: PL/1 of IBM was about to appear. However, my proposal, although technically
realistic, succumbed to the small majority that favored a milestone.

Simply postulating a language and defining it on paper would not suffice. A solid compiler also had to be
built, which usually was a highly complex program. In this respect, large industrial firms had an
advantage over our Working Group, which had to rely on enthusiasts at universities. I left the Group in
1966 and devoted myself together with a few doctoral students at Stanford University to the
construction of a compiler for my proposal. The result was the language Algol W, which after 1967
came into use at many locations on large IBM computers. It became quite successful. The milestone
Algol 68 did appear and then sank quickly into obscurity under its own weight, although a few of its
concepts did survive into subsequent languages.

But in my opinion Algol W was not perfectly satisfactory. It still contained too many compromises,
having emerged from a committee. After my return to Switzerland, I designed a language after my own
preferences: Pascal. Together with a few assistants, we wrote a user manual and constructed a
compiler. In the course of it, we made a dire experience. We intended to describe the compiler in
Pascal itself, then translate it manually to Fortran, and finally compile the former with the latter. This
resulted in a great failure, because we found it impossible to translate a program written in a structured
language into an unstructured language. After this unfortunate, expensive lesson, a second try
succeeded, where in place of Fortran the local language Scallop (M. Engeli) was used.

Pascal

Like its precursor [predecessor means died earlier] Algol 60, Pascal featured a precise definition and a
few, perspicuous basic elements. Its structure, the syntax, was formally defined in EBNF. Statements
described assignments of values to variables, and conditional and repeated execution. Moreover, there
were procedures. A significant extension were data types and structures: Arrays, records, files
(sequences), and pointers. Its elementary data types were integers and real numbers, Boolean values
and enumerations (of constants). Procedures featured two kinds of parameters, value- and variable-
parameters. Procedures could be used recursively. Most essential was the pervasive concepts of data
types: Every constant, variable, or function was of a fixed, static type. Thereby programs obtained much
redundancy which a compiler had to use for checking type consistency. This contributed to the
detection of error, and this before the program’s execution.

Pascal was easy to teach, and it covered a wide spectrum of applications, which was a significant
advantage over Algol, Fortran, and Cobol. The Pascal System was efficient, compact, and easy to use.
The language was strongly influenced by the new discipline of structured programming, advocated
primarily by E.W. Dijkstra to fight the threatening software crisis (1968).

Already in 1970 Pascal was published and for the first time used in large courses at ETH Zurich on a
grand scale. We had even defined a subset Pascal-S and built a smaller compiler, in order to save
computing time and memory space on our large CDC computer, and to reduce the turn-around time for
students. Back then, computing time and memory space were still scarce.

Pascal’s spread and distribution

Soon Pascal became noticed at several universities, and interest rose for its use in classes. We
received requests for possible help in implementing compilers for other large computers. It was my idea
to postulate a hypothetical computer, which would be simple to realize on various other main frames,
and for which we would build a Pascal compiler at ETH. The hypothetical computer would be quickly
implementable with relatively little effort using readily available tools (assemblers). Thus emerged the
architecture Pascal-P (P for portable), and this technique proved to be extremely successful. The first
clients came from Belfast (Prof. Hoare). Two assistants brought two heavy cartons of punched cards to
Zurich. At the border, they were inspected with scrutiny, for there was the suspicion that the holes might
contain secrets subject to custom fees. - All this occurred without international project organizations,
without bureaucracy and research budgets. It would be impossible today.

An interesting consequence of these developments was the emergence of user groups, mostly of
young enthusiasts who wanted to promote and distribute Pascal. Their core resided under Andy Mickel
in Minneapolis, where they regularly published a Pascal Newsletter. This movement contributed
significantly to the rapid spread of Pascal.

Several years went by until in 1975 the first micro-computers appeared on the market. These are small
computers with a processor integrated on a single chip and with 8-bit data paths, affordable by private
persons. It was recognized that Pascal was suitable for these processors, due to its compact compiler
which would fit into the small memory (64K). A group under Ken Bowles at the University of San Diego,
and Philippe Kahn at Borland Inc. in Santa Cruz surrounded our compiler with a simple operating
system, a text editor, and routines for error discovery and diagnostics. They sold this package for $50
on floppy disks (Turbo Pascal). Thereby Pascal spread immediately, particularly in schools, and it
became the entry point for many to programming and computer science. Our Pascal Manual became a
best seller.

This spreading did not remain restricted to America and Europe. Russia and China welcomed Pascal
with enthusiasm. This I became aware of only later, during my first travels to China (1982) and Russia
(1990), when I was presented with a copy of our Manual written in (for me) illegible characters and
symbols.

Pascal’s successors

But time did not stand still. Rapidly computers became faster, and therefore demands on applications
grew, as well as those on programmers. No longer were programs developed by single persons. Now
they were built by teams. Constructs had to be offered by languages that supported teamwork. Single
persons were to design parts of systems called modules, and to do this relatively independently.
Modules would later be linked and loaded automatically. Already Fortran had offered this facility, but
now a linker would have to verify the consistency of data types also across module boundaries. This
was not a simple matter!

Modules with type consistency checking across boundaries were indeed the primary extension of
Pascal’s first successor Modula-2 (for modular language, 1979). It evolved from Pascal, but also from
Mesa, a language developed at Xerox PARC for system-programming, which itself originated from
Pascal. Mesa, however, had grown too wildly and needed “taming”. Modula-2 also included elements
for system-programming, which admitted constructs that depended on specific properties of a
computer, as they were necessary for interfaces to peripheral devices or networks. This entailed
sacrificing the essence of higher languages, namely machine-independent programming. Fortunately,
however, such parts could now be localized in specific “low-level” modules, and thereby be properly
isolated.

Apart from this, Modula contained constructs for programming concurrent processes (or quasi-parallel
threads). “Parallel programming” was the dominant theme of the 1970s. Overall, Modula-2 grew rather
complex and became too complicated for my taste, and for teaching programming. An improvement
and simplification appeared desirable.

From such deliberations emerged the language Oberon, again after a sabbatical at Xerox PARC. No
longer were main frame computers in use, but powerful workstations with high-resolution displays and
interactive usage. For this purpose, the language and interactive operating system Cedar had been
developed at PARC. Once again, a drastic simplification and consolidation seemed desirable. So, an
operating system, a compiler, and a text editor were programmed at ETH for Oberon. This was
achieved by only two programmers, Wirth and Gutknecht, in their spare time over 6 months. Oberon
was published in 1988. The language was influenced by the new discipline of object-oriented
programming. However, no new features were introduced except type extension. Thereby for the first
time a language was created that was not more complex, but rather simpler, yet even more powerful
than its ancestor. A highly desirable goal had finally been reached.

Even today Oberon is successfully in use in many places. A breakthrough like Pascal’s, however, did
not occur. Complex, commercial systems are to widely used and entrenched. But it can be claimed that
many of those languages, like Java (Sun Microsystems) and C# (Microsoft) have been strongly
influenced by Oberon or Pascal.

Around 1995 electronic components dynamically reprogrammable at the gate level appeared on the
market. These field programmable gate arrays (FPGA) can be configured into almost any digital circuit.
The difference between hardware and software became increasingly diffuse. In 1996 (and 2017) I
developed the language Lola (logic language) with similar elements and the same structure as Oberon
for describing digital circuits. Such hardware description languages (HDL) replace circuit diagrams as
used in earlier times by formal texts. This facilitates the common design of hardware and software,
which has become increasingly important in practice.

